Nutrient-Sensing Mechanisms across Evolution
نویسندگان
چکیده
For organisms to coordinate their growth and development with nutrient availability, they must be able to sense nutrient levels in their environment. Here, we review select nutrient-sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes.
منابع مشابه
Nutrient-Sensing Mechanisms in the Gut as Therapeutic Targets for Diabetes
The small intestine is traditionally viewed as an organ that mediates nutrient digestion and absorption. This view has recently been revised owing to the ability of the duodenum to sense nutrient influx and trigger negative feedback loops to inhibit glucose production and food intake to maintain metabolic homeostasis. Further, duodenal nutrient-sensing defects are acquired in diabetes and obesi...
متن کاملExtending healthy life span--from yeast to humans.
When the food intake of organisms such as yeast and rodents is reduced (dietary restriction), they live longer than organisms fed a normal diet. A similar effect is seen when the activity of nutrient-sensing pathways is reduced by mutations or chemical inhibitors. In rodents, both dietary restriction and decreased nutrient-sensing pathway activity can lower the incidence of age-related loss of ...
متن کاملCollective sensing and collective responses in quorum-sensing bacteria
Bacteria often face fluctuating environments, and in response many species have evolved complex decision-making mechanisms to match their behaviour to the prevailing conditions. Some environmental cues provide direct and reliable information (such as nutrient concentrations) and can be responded to individually. Other environmental parameters are harder to infer and require a collective mechani...
متن کاملNeuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress
Citation: Jayakumar S and Hasan G (2018) Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress. Front. Neural Circuits 12:25. doi: 10.3389/fncir.2018.00025 All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appr...
متن کاملNutrient-sensing hypothalamic TXNIP links nutrient excess to energy imbalance in mice.
Nutrient excess in obesity and diabetes is emerging as a common putative cause for multiple deleterious effects across diverse cell types, responsible for a variety of metabolic dysfunctions. The hypothalamus is acknowledged as an important regulator of whole-body energy homeostasis, through both detection of nutrient availability and coordination of effectors that determine nutrient intake and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 161 شماره
صفحات -
تاریخ انتشار 2015